by Efthymios N. Karatzas, Monica Nonino, Francesco Ballarin and Gianluigi Rozza
Reference:
A Reduced Order Cut Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems (Efthymios N. Karatzas, Monica Nonino, Francesco Ballarin and Gianluigi Rozza), In Computers & Mathematics with Applications, 2021.
Bibtex Entry:
@article{doi:10.1016/j.camwa.2021.07.016,
title = {A Reduced Order Cut Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems},
journal = {Computers & Mathematics with Applications},
year = {2021},
bibyear={2021},
issn = {0898-1221},
doi = {10.1016/j.camwa.2021.07.016},
url = {https://www.sciencedirect.com/science/article/pii/S0898122121002790},
author = {Efthymios N. Karatzas and Monica Nonino and Francesco Ballarin and Gianluigi Rozza},
keywords = {Reduced Order Models, Unfitted mesh, Cut Finite Element Method, Navier–Stokes equations, Parameter–dependent shape geometry},
call={preparatory},
acronym={OCPDECFEMRID},
fulltitle={Optimal control constrained by Partial Differential Equations (PDEs) via Cut Finite Elements method (CutFEΜ) and random input data},
pi={Efthymios Karatzas},
affiliation={National Technical University of Athens},
researchfield={Mathematics and Computer Science}
}