A Reduced Order Cut Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems (bibtex)
by Efthymios N. Karatzas, Monica Nonino, Francesco Ballarin and Gianluigi Rozza
Reference:
A Reduced Order Cut Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems (Efthymios N. Karatzas, Monica Nonino, Francesco Ballarin and Gianluigi Rozza), In Computers & Mathematics with Applications, 2021.
Bibtex Entry:
@article{doi:10.1016/j.camwa.2021.07.016,
  title = {A Reduced Order Cut Finite Element method for geometrically parametrized steady and unsteady Navier–Stokes problems},
  journal = {Computers & Mathematics with Applications},
  year = {2021},
  bibyear={2021},
  issn = {0898-1221},
  doi = {10.1016/j.camwa.2021.07.016},
  url = {https://www.sciencedirect.com/science/article/pii/S0898122121002790},
  author = {Efthymios N. Karatzas and Monica Nonino and Francesco Ballarin and Gianluigi Rozza},
  keywords = {Reduced Order Models, Unfitted mesh, Cut Finite Element Method, Navier–Stokes equations, Parameter–dependent shape geometry},
  call={preparatory},
  acronym={OCPDECFEMRID},
  fulltitle={Optimal control constrained by Partial Differential Equations (PDEs) via Cut Finite Elements method (CutFEΜ) and random input data},
  pi={Efthymios Karatzas},
  affiliation={National Technical University of Athens},
  researchfield={Mathematics and Computer Science}
}